Aromatase inhibitory activity of 1,4-naphthoquinone derivatives and QSAR study

نویسندگان

  • Veda Prachayasittikul
  • Ratchanok Pingaew
  • Apilak Worachartcheewan
  • Somkid Sitthimonchai
  • Chanin Nantasenamat
  • Supaluk Prachayasittikul
  • Somsak Ruchirawat
  • Virapong Prachayasittikul
چکیده

A series of 2-amino(chloro)-3-chloro-1,4-naphthoquinone derivatives (1-11) were investigated for their aromatase inhibitory activities. 1,4-Naphthoquinones 1 and 4 were found to be the most potent compounds affording IC50 values 5.2 times lower than the reference drug, ketoconazole. A quantitative structure-activity relationship (QSAR) model provided good predictive performance (R2CV = 0.9783 and RMSECV = 0.0748) and indicated mass (Mor04m and H8m), electronegativity (Mor08e), van der Waals volume (G1v) and structural information content index (SIC2) descriptors as key descriptors governing the activity. To investigate the effects of structural modifications on aromatase inhibitory activity, the model was employed to predict the activities of an additional set of 39 structurally modified compounds constructed in silico. The prediction suggested that the 2,3-disubstitution of 1,4-naphthoquinone ring with halogen atoms (i.e., Br, I and F) is the most effective modification for potent activity (1a, 1b and 1c). Importantly, compound 1b was predicted to be more potent than its parent compound 1 (11.90-fold) and the reference drug, letrozole (1.03-fold). The study suggests the 1,4-naphthoquinone derivatives as promising compounds to be further developed as a novel class of aromatase inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of naphthoquinone derivatives as topoisomerase I inhibitors using fragment based QSAR

In this study an attempt was made to understand the structural requirements for Topoisomerase I (Topo I) inhibition using a novel Group based QSAR (GQSAR) or fragment based QSAR technique. Here we combined the GQSAR technology with conventional 2D and 3D QSAR to derive GQSAR models for various reported naphthoquinone derivatives. Various regression models such as Multiple Regression (MRA), Part...

متن کامل

QSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method

COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...

متن کامل

QSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method

COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...

متن کامل

Synthesis, Characterization and In-vitro Evaluation of Novel Naphthoquinone Derivatives and Related Imines: Identification of New Anticancer Leads

Quinones such as 1,4-naphthoquinones are abundant in nature and naphthoquinone based natural products are known to possess anticancer activity. This pharmacophore is known to convey anticancer activity to some drugs such as streptonigrin, mitomycin A, etc. We synthesized and characterized different classes of naphthoquinone derivatives including bis naphthoquinone, 2-arylaminonaphthoquinone, be...

متن کامل

A QSAR Study of 2-carboxamide-1,4-di-N-oxide quinoxaline Derivatives

A set of density functional theory (DFT) calculations were performed on 2-carboxamide-1,4- di-N-oxide quinoxaline (2CdNOQ) derivatives. The optimized structure of these compounds in three forms was obtained. Some electronic parameters including dipole moment (μ),ionization potential (I), electron af finity (A), LUMO energy (εLUMO), HOMO energy (εHOMO),electronegativity (χ), hardness (η), ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017